โ–ธโ–ธ
  • ๐Ÿ‡ฌ๐Ÿ‡ง Lithium
  • ๐Ÿ‡บ๐Ÿ‡ฆ ะ›ั–ั‚ั–ะน
  • ๐Ÿ‡จ๐Ÿ‡ณ ้‹ฐ
  • ๐Ÿ‡ณ๐Ÿ‡ฑ Lithium
  • ๐Ÿ‡ซ๐Ÿ‡ท Lithium
  • ๐Ÿ‡ฉ๐Ÿ‡ช Lithium
  • ๐Ÿ‡ฎ๐Ÿ‡ฑ ืœื™ืชื™ื•ื
  • ๐Ÿ‡ฎ๐Ÿ‡น Litio
  • ๐Ÿ‡ฏ๐Ÿ‡ต ใƒชใƒใ‚ฆใƒ 
  • ๐Ÿ‡ต๐Ÿ‡น Lítio
  • ๐Ÿ‡ช๐Ÿ‡ธ Litio
  • ๐Ÿ‡ธ๐Ÿ‡ช Litium
  • ๐Ÿ‡ท๐Ÿ‡บ ะ›ะธั‚ะธะน

Lithium does not occur as the free metal in nature because of its high reactivity. Deposits are known all aroun the world. It is a minor component of nearly all igneous rocks and is a component of many natural brines (see below). Large deposits are located in California and Nevada (both in the USA) in several rock forms, particularly spodumene. The four main lithium minerals are spodumene, lepidolite, petalite, and amblygonite.

  • spodumene: LiAlSi2O6. This is the most important and abundant of the lithium ores. Deposits are located in North America, Brazil, USSR, Spain, parts of Africa, and Argentina. One method of extraction involves converting α-spodumene (the naturally occurring form) to the β-form (a less dense material) by heating to 1100°C, mixing with sulphuric acid, H2SO4, and heating to 250°C. This is followed by extracting into water to give a lithium sulphate solution, Li2SO4, suitable for further processing.
  • lepidolite: K2Li3Al4Si7O21(OH,F)3. Deposits are located in Canada and parts of Africa. The mineral sometimes contains caesium and rubidium. Lithium can be extracted by similar methods to those of spodumene
  • petalite: LiAlSi4O10. Deposits are located in parts of Africa and Sweden.
  • amblygonite: LiAl(F,OH)PO)4. Amblygonite occurs in only minor deposits

Lithium is also recovered from lakes such as Searles Lake (California, USA) and Clayton Valley (Nevada, USA). Lithium is extracted from the brine by solar evaporation, precipitation of Group 2 elements if necessary, and precipiation of lithium carbonate by addition of sodium carbonate to the hot brine.

Abundances of lithium in various environments

In this table of abundances, values are given in units of ppb (parts per billion; 1 billion = 109), both in terms of weight and in terms of numbers of atoms. Values for abundances are difficult to determine with certainty, so all values should be treated with some caution, especially so for the less common elements. Local concentrations of any element can vary from those given here an orders of magnitude or so and values in various literature sources for less common elements do seem to vary considerably.

Abundances for lithium in a number of different environments. Use the links in the location column for definitions, literature sources, and visual representations in many different styles (one of which is shown below)
Location ppb by weight ppb by atoms
Universe 6 1
Sun 0.06 0.01
Meteorite (carbonaceous) 1700 4600
Crustal rocks 17000 50000
Sea water 180 160
Stream 3000 430
Human 30 27
Image showing periodicity of the logarithm of the abundance in the earth's crust of the chemical elements as a heat map on a periodic table grid.
Image showing periodicity of the logarithm of the abundance in the earth's crust of the chemical elements as a heat map on a periodic table grid.
Image showing periodicity of the logarithm of the abundance (by atom rather than weight) in the sun of the chemical elements as a heat map on a periodic table grid.
Image showing periodicity of the logarithm of the abundance (by atom rather than weight) in the sun of the chemical elements as a heat map on a periodic table grid.

The chart above shows the log of the abundance (on a parts per billion scale) of the elements by atom number in our sun. Notice the "sawtooth" effect where elements with even atomic numbers tend to be more strongly represented than those with odd atomic numbers. This shows up best using the "Bar chart" option on the chart.

cartogram depicting abundance of elements in the earth's crust
A cartogram depicting the abundance of elements in the earth's crust. Squares for each element are distorted in proportion to the numerical value of the abundance.